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Magnetohydrodynamics Computations with 
Lattice Gas Automata 

Shiyi Chen, 1,2 Daniel  O. Mart inez,  ~ W. H. Matthaeus,  1 and Hudong C h e n  3 

Lattice gas automata have received considerable interest for the last several 
years and possibly may become a powerful numerical method for solving 
various partial differential equations and modeling different physical 
phenomena, because of their discrete and parallel nature and the capability of 
handling complicated boundaries. In this paper, we present recent studies on the 
lattice gas model for magnetohydrodynamics. The FHP-type lattice gas model 
has been extended to include a bidirectional random walk process, which allows 
well-defined statistical quantities, such as velocity and magnetic field, to be com- 
puted from the microscopic particle representation. The model incorporates a 
new sequential particle collision meth.od to increase the range of useful Reynolds 
numbers in the model, an improvement that may also be of use in other lattice 
gas models. In the context of a Chapman-Enskog expansion, the model 
approximates the incompressible magnetic hydrodynamic equations in the limit 
of low Mach number and high ft. Simulation results presented here demonstrate 
the validity Of the model for several basic problems, including sound wave and 
Alfv6n wave propagation, and diffusive Kolmogoroff-type flows. 
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1. I N T R O D U C T I O N  

Since the invent ion  of lattice gas au tomata ,  ~'2) lattice gas methods have 

been used as a numerica l  scheme to solve the Navier -S tokes  equat ions  and  

other partial  differential equat ions  and  as a discrete model ing approach to 
various physical problems. The success of lattice gas methods  '3-9) from the 

computa t iona l  point  of view comes from their discrete nature,  which allows 
their implementa t ions  to be purely parallel, local, and  based almost  
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exclusively on fast logical operations. This structure is ideal for modern 
parallel computers, such as the Connection Machine. ~1~ In addition, lattice 
gases are many-body dynamical systems that connect the microscopic par- 
ticle picture to macroscopic physical behavior. One of the most important 
advantages of the lattice gas methods over other traditional approaches is 
that the former does not need to solve directly the physical equations, most 
of which are usually nonlinear partial differential equations that are not 
easily solved. In recent lattice gas research, the program has typically been 
that one designs a set of microscopic particle "collision" and "streaming" 
rules, defines a set of statistical operations to extract macroscopic qua n- 
tities of physical importance, and then demonstrates the validity of the 
model either analytically or by application to specific physical problems of 
interest. 

The basic two-dimensional lattice gas model proposed by Frisch, 
Hasslacher, and Pomeau (FHP) (1) consists of identical unit-mass particles 
on a hexagonal lattice. There are only six possible states at each cell along 
the links. An exclusion rule is imposed for particle occupation so that no 
more than one particle at a given site can have the same momentum. The 
two operations for particles on a lattice are. collision and streaming. For 
modeling the incompressible Navier-Stokes equations, the collision step 
usually requires conservation of mass and momentum. 

The extension of the basic FHP lattice gas model to simulate 
magnetohydrodynamics (MHD) in two dimensions was made first by 
Montgomery and Doolen m' 12) by considering the vector potential (a scalar 
quantity in two dimensions) to be the fundamental variable. In addition to 
the basic lattice gas model, they assigned the magnetic quantum a = 1, -1 ,  
or 0 to each particle. This scheme is appealing intuitively, but requires 
some interactions between the space-averaged variables and lattice quan- 
tities in the collision step and thus lacks of the parallel feature usually 
sought in lattice gas models. Another MHD lattice gas model, a purely 
local one, has been proposed by Chen e t  aL, (13'~4) which introduces the idea 
of tensor lattice particles and allows the particles to have a "bidirectional" 
streaming. 

In this paper, we will present some further theoretical results for the 
latter model, discuss the detailed implementation of the numerical simula- 
tions, and show some computational results for several basic MHD 
problems. A major extension of the original model is the use of a "sequen- 
tial collision" method that permits all allowable scattering events to be 
detected and computed at each cell and at each time step, without the. use 
of unrealistically large collision lookup tables. The computational results 
presented here are intended to address several basic questions concerning 
the behavior of the model, and serve to demonstrate that the basic physics 
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of M H D  can be recovered from the lattice gas dynamics. Some limitations 
of the model are also addressed. The paper is organized as follows: In 
Section 2, we present the lattice gas model for MHD. Particles with the 
bidirectional random walk property are introduced here. Section3 dis- 
cusses the transport theory, where we describe our new implementation of 
the collision operations that serves to increase the Reynolds number. We 
also give the comparisons of theoretical results and numerical simulations 
for the kinematic viscosity and the magnetic resistivity. In Section 4, we 
describe Alfv6n wave and linear sound wave propagation in the M H D  
lattice gas. A brief summary is given in the last section. Based on the results 
shown here, we suggest that the M H D  lattice gas model may be applied 
with some success to more complicated physical problems, a topic that will 
be addressed further in subsequent reports. 

2. LATTICE G A S  M O D E L  FOR M H D  

The incompressible M H D  equations are described by the partial 
differential equations 

0tv + v" Vv -- - V p  + (V x B) x B + yV2v 

c~,B + v" VB = B" Vv + #V2B ( 1 ) 

V . v = V . B = 0  

where v and B are the velocity and magnetic field, respectively, in an 
appropriate set of units. The constant parameters v and # are the kinematic 
viscosity and the resistivity (or magnetic diffusivity). The magnetic vector 
potential A is related to B by V x A = B. The magnetic field modifies the 
motion of the fluid in the momentum equation through the Lorentz force 
(V x B ) x  B. In two dimensions, v and B lie in the x - y  space and depend 
only on those coordinates, and, in terms of the magnetic potential A = 
A(x, y)z, the induction equation can be replaced by the scalar equation 

0tA + v- VA = #V2A (2) 

Equation (2) is the basic equation addressed in the model of Montgomery 
and Doolen/11' 12~ 

In order to use the lattice gas scheme to model the M H D  equations, 
one has to consider the additional variable B, which necessitates the intro- 
duction of additional degrees of freedom at the lattice gas level. That is, 
one must define an additional property of the particles. In the original 
F H P  model, the particles can be in any one of the six momentum states 
which point to the nearest neighbors. Then the particle states are com- 
pletely determined by one vector quantum, the momentum. In contrast, in 
the model of Chen etalJ ~3'~4) a new kind of particle is introduced, the 
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tensor particle. There each particle is represented by two vectors, ea and eb 
(a, b =  1 ..... 6). The a direction can be thought of as the usual FHP-type 
momentum state, specifying the velocity field, while the new direction b is 
directly related to the magnetic field. Therefore, for each lattice site, there 
are in total 36 possible states, conveniently designated as (a, b) (a, b = 
1,..., 6). An exclusion principle is again applied, so that at the most one 
particle at each lattice site can have the quantum (a, b). If we u s e  Nab(X  , t )  

to represent the particle state occupation (a, b) at x and at time t, then 
Nob = 1 or 0 for the state (a, b), depending on whether the state is occupied 
by a particle or not, respectively. The basic idea for the collision process is 
the same as in the original FHP model. The particle configuration, after 
arrival at each cell, will be redistributed in a way that respects conservation 
of total mass, momentum, and magnetic intensity, quantities that will be 
defined later. The detailed collisions can be simple or complex, and can be 
either simultaneous or sequential, as we will discuss in the next section. 

An important property of this model compared with other lattice gas 
models (1) is that the present model introduces a new type of streaming pro- 
cess called the "bidirectional random walk." During this streaming process, 
at each time step, a particle in state (a, b) can hop from one site to one of 
its six nearest neighboring sites either in the direction ea with probability 
1-[Pabl,  or in the direction sign(Pab)e b with probability IPab 1. The 
parameter Pab (IPab[ ~ 1) is a function of (a, b) only and the determination 
of Pab, which is crucial in obtaining MHD behavior from the model, will 
be discussed later. The significance of this nondeterministic streaming is 
that the direction of motion of any particle is not fixed solely by the 
"momentum" direction as in the pure fluid case, but also is influenced by 
the magnetic field. The ratio of the particle streaming in a to b direction 
represents the effect of the macroscopic velocity and the magnetic field on 
a single particle, including the effects of the Lorentz force, which is crucial 
in distinguishing MHD from the hydrodynamics of nonconducting fluids. 
The bidirectional random walk process introduces stochastic effects in the 
streaming dynamics of the model. In contrast, in the original FHP lattice 
gas model stochastic effects enter only through the collision step, for exam- 
ple, through a random choice of clockwise or anticlockwise rotations for 
two-body head-on collisions. Note that this two-direction streaming 
scheme does not change the momentum or magnetic field locally. 

From the collision and streaming sequence, we can write the general 
form of the microscopic kinetic equation that determines the evolution 
of N~b: 

Nab(X, t +  1)--(1--IPabt)N~b(X--ea, t) 

-- [Pub[ Nab(  x - -  sign(P~b) e b, t) = g2~b (3) 
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The collision operation is denoted by ~'2ab , and is interpreted as the change 
in the population of the state (a, b) as a consequence of all collisions at a 
specified site and time level. The collision operator includes creation and 
annihilation effects and is chosen to conserve the total mass, momentum, 
and magnetic field at each site at each time step. From the exclusion 
property of the particle occupation for (a, b), 12,b usually has the form 

~'~ab = ~ (N'ab -- Nab) ~(Nab ~ Ntab) Ha, bNNjb( 1 -- Nab) (1 --Nab) (4) 
s, s' 

Here, ~(s ~ s') denotes the transition probability from the state Nab before 
a collision to a state N'~b after a collision. Let us define f~b = (N~b) to be 
the ensemble average of N~b, and let us assume that the quantities that 
emerge through this averaging process vary on a characteristic macroscopic 
time scale T and space scale L that are much larger than the microscopic 
collision time and lattice unit length, respectively. By performing a Taylor 
expansion, one arrives at the kinetic equation in the continuum form, 

0tf~b(x, t ) +  {(1 --[Pabl)e~+P~beb} "Wfab(X , t) = f2ab (5) 

where f2~b is the continuous collision operator obtained from (4) by using 
f~b instead of Nab and Sab instead of Nab in the exponentials. Here we have 
defined Sub to be 1 if the state (a, b) is occupied, or 0 otherwise. To obtain 
this simple expression, we assume also that there are no correlations 
among different states at the same site and time, i.e., we introduce the 
Boltzmann approximation. 

The macroscopic number density n, momentum nv, and magnetic field 
B are defined by 

n =  

a,b 

n v = ~  (6) 
a,b 

n B =  
a,b 

Note that the definitions of velocity and magnetic field are not of the same 
type as in the familiar FHP model in which the macroscopic velocity field 
is directly defined as the simple average of the associated microscopic 
quantity, i.e., nv =Za ,  b eafab. In the present case the microscopic velocity 
lga b and magnetic field B,b are defined 

{(1 - IPabl) ea + Pabeb} fab 

{aabeb + Rabea} f~b 

B~b = {Qabeb + R.be~} 

822/68/3-4-13 
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Therefore, both directions ea and eb make contributions to the velocity and 
the magnetic field. 

The parameter matrices Pab, Qab, and Rab in (6) are chosen to be 
constants for a given system and to be determined in such a way that if one 
inserts the quantities in (6) into Eq. (5), the macroscopic moment equa- 
tions that are obtained will reduce to the MHD equations in (1). Because 
the MHD system is invariant under proper or improper rotations, it can be 
shown (14) that the parameter matrices depend only upon la-b[ .  Further- 
more, since the velocity field is a vector field and B is a pseudovector, the 
time evolution of the MHD velocity field is unchanged if the magnetic field 
is reversed everywhere. We make use of this property at the microscopic 
level and require that Pab=--Pab+3, Qab=Qab+3, and Rab = --Rab+3. 
Hence, there are only six independent parameters in this model. These are 
chosen to be Paa, Pa,+~, qa,, qaa+~, rag, and r~a+ ~. 

Forming moments of the particle distribution by multiplication of 
Eq. (5) by 1, gab, and B,b and summing over a and b, one obtains the 
macroscopic equations for mass, momentum, and ,magnetic field, which 
take the form 

ton 
~ + V - n v = O  

to(nV)+V.H = 0  (7) 
tot 

to(nB) + V.  A = 0 
tOt 

where H a n d  A are the momentum flux tensor and the magnetic field flux 
tensor, respectively. In particular, 

1I = Z Jab ~~ f.~ 
ab 

A = ~ Bah g.b Jab 
ab 

3. BOLTZMANN A P P R O X I M A T I O N  AND TRANSPORT 
COEFFICIENTS 

To reduce further the form of Eqs. (7) and thereby obtain the macro- 
scopic equation for MHD, we assume that the microscopic collision pro- 
cesses drive the system rapidly toward a local thermodynamic equilibrium. 
From the conservation laws of the collision operation, one can prove by 
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using the H-theorem (3) that the equilibrium should have the Fermi Dirac 
form 

1 
f(o) = 

ab 1 + exp(e +/3ea" u + ~/%" B) (8) 

The Lagrange multipliers ~, /3, and q are functions of r/, v and B and are 
determined from the conservation of mass, momentum, and magnetic field 
by microscopic collisions. Following the Chapman-Enskog expansion 
scheme, this equilibrium is assumed to be the zeroth-order solution of the 
collision operator, that is, f2~ (~ = 0. 

Under the condition of small velocity Iv[ ~ 1 and small magnetic field 
I BI ~ 1, the equilibrium distribution can be expanded and written 
approximately as 

where 

f ( o ) = n  n / ' v ' ,~a  B'~b~ 
~b 36"  18 ~--~-1 + ~ T J  

2. ;Qo;vv 
+ ~ g(") ~ - - ~ -  + ~ / + O(v ~, v=~, vB ~, B ~) 

1 
Qaij = e aie,v - ~ 6 ij 

18 - n  
g(n) = 

36 - n  

(9) 

(10) 

and 21, 22 depend on the matrices Pab, Qab, and Rab. (~4) Substituting (8) 
and (6) into (5), one can show that n, v, and B approximately obey the 
following nondissipative equations: 

8,n + V.  (nv) = 0 

F -6--2 n g ( n ) ( C 2 v n  1 2 _ C3 B2)] 8t(nv) +V LC1 
= - V  . n g ( n ) [ C z v v -  C3BB] (11) 

8z(nB) + (D1 - D3)V. [ng(n) By] + (D 2 + D3)V. [ng(n) vB] 

= D3V[ng(n)v"  B] 

The coefficients C1, C2, C3, D1, D2, and D3 depend upon the matrices Pab, 
Qab, and Rab ; detailed expressions of this dependence have been obtained 
in ref. 14. 
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In order to arrive at the complete MHD equations (with diffusive 
terms), we have to consider the next order approximation in (9). To do 
that and to obtain the transport coefficients, we have to take into 
consideration the detailed structure of the collision operator in (4). In the 
original paper, (14~ only simple two-body head-on collisions and three-body 
symmetric collisions were considered, where these collisions do not allow 
any nonparticipating "spectators." This definition of the collisions give rise 
to relatively large transport coefficients, including the kinematic viscosity v 
and the magnetic resistivity #. Physically this structure of the collisions is 
associated with a low-particle-density limit. In real lattice gas simulations, 
one generally does not use very low densities to simulate realistic flows, 
because it leads to long mean free paths and long relaxation times. It is 
known (15/ that the computational work in a two-dimensional lattice gas 
system is proportional to Re 9/4 from consideration of the signal-to-noise 
ratio, where Re is the Reynolds number, inversely proportional to the 
viscosity. Therefore, in order to reduce computational work, it is desirable 
for lattice gas models to have low transport coefficients, allowing a simula- 
tion of a system with the same Reynolds number but with fewer lattice 
cells. Moreover, the viscosity is a function of the collision frequency, and 
usually a high collision frequency will have a low viscosity. In the present 
model, the phase space for the collisions includes 36 possible states and 
it would be ideal to allow the collision operator to include all possible 
collisions (the highest collision frequency) to minimize the transport coef- 
ficients. A list of all such possible collisions would require 2 36 ~ 7 • 10 l~ 
entries. For a real programming situation, using a table lookup scheme, (9) 
this table would need about 10 gigabytes of fast memory, which is not 
possible on most current computers. An alternative would be to use the 
logical operations to compute the entire Boolean collision integral, (9) but 
for the present case it would be very tedious and quite complicated to write 
down the complete logic for all possible collisions. In addition, a program 
that computed such a large number of collisions directly would be 
extremely inefficient. 

In the present implementation of the MHD lattice gas model, in order 
to strike a reasonable compromise between the Reynolds number require- 
ment and the efficiency of the computations, we introduce the following 
two-step "sequential" collision algorithm: 

(1) Three-body collisions: at each lattice cell and for each collision 
time step, we first implement the three-body collision operation. For this 
step, we look at all possible three-particle symmetric configurations in each 
cell (up to 12) that allow for particle scattering. At the same time, we also 
classify all three-hole symmetric configurations which would be able to 



M H D  Computations with Lattice Gas Automata 541 

accept particles after a possible scattering event. Then we randomly pick 
one pair of these particle and hole configurations and interchange their 
populations (i.e., the particles and holes are interchanged). After this step, 
we will carry out the same procedure sequentially for the other sets of 
states, in a predetermined order. This process will continue until we cannot 
find any more pairs of three-particle and three-hole symmetric configura- 
tions. Actually, the number of such three-body scattering events in a 
particular cell number will be the minimum of the number of three-particle 
configurations and the number of three-hole configurations, since the 
operation is restricted by the exclusion rule of the model. Note that for 
each collision, we do not care whether or not the other states are occupied. 
Thus,~each actual collision could be taking place in a cell having many par- 
ticles. In fact there can be up to 30 "spectator" particles during a specific 
interchange of three particles and three holes. Thus, we can see that the 
present collision scheme allows many more collision possibilities than the 
original lattice gas model, for example, the FHP-I model and the model 
presented in ref. 14, where only purely three-body collision are considered. 

(2) Two-body head-on collisions: After the three-body collision step, 
we will have a new particle and hole configuration in each lattice. The 
following two-body head-on collision procedure begins from this new con- 
figuration. The basic idea for the two-body collisions is the same as for the 
three-body case. All the states are logically scanned for the occurrence of 
occupied head-on particle states and unoccupied head-on hole states. Using 
a randomly selected sequence, the pairs of matched holes are interchanged 
with the pairs of matched particles until the supply of either set of pairs is 
exhausted. The logic for this operation is straightforward to code and 
efficient to execute using Boolean masks with no branching. 

From the computational point of view, the above-described sequential 
collision algorithm does not need a large amount of memory to deal with 
all possible configurations. Instead, it needs at most only 6 bits (per cell 
in a parallel implementation) at each time step for three-body collisions, 
which have the simple form 

fa,  b f a +  2,b+ 2 fa+4,  b+4( 1 --  fa' ,b')(  | -- fa '  + 2,b' + 2)( 1 -- fa '  +4,b' +4) 

and 4 bits for two-body collisions, which have the form fa, bfa+3,b+3 
(1 - f a ,  b,)(1 --fa:+3.b'+3), where we require that (a, b) ~ (a', b'). 

For this two-step sequential collision process, the general collision 
operator has the form 

t2~b = t23b(f) + t'2]b(f' ) 
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I n  ~'23ab(f), we use the quantity f at the time step t, while in ~22b(f ') w e  use 
the new f '  that can be written a s  f~ab ----- f a b (  X, t )  "+- 3 .C2 a b ( f ( x  , t)  ). The detailed 
collision operators can be written as 

I 3B~ ~ 03ab(f) = 1~ ( l _ f c d )  Z Sefgfea+ f f~+3La+s+Sefgfeaf fa+2fga+ 4 
c,d efg 

y, 3 -  ~ - ] 
- S~fbaf~a+zffa+4 

ef A 

and 

f22b(f) = 1-[ (1 --f~d) Z [ 2L-- ~ 2R-- -- 2B-- ~ Se f  fea+l fJa+4 "~ Sef Yea+ 2fJh+ 5 ~- Sef f~a fya + 3 
c,d ef I_ 

which correspond to the three- and two-body particle collisions. In the 
above equations, lab = fab/(1--fab)" The coefficient S 3A is the probability 
for having input populations at a specific Site without a particle in the 
particular state (a, b). The coefficient S 3e is the probability for an output 
population with the state (a, b) occupied by a particle, for the case in which 
the collisions have changed only the b vectors. The coefficient S 3 is the 
probability for all collisions in which the population initially included a 
particle occupying the state (a, b), but in which this state is unoccupied in 
the output population, and, in addition, the scattering out of (a, b) is 
affected by changing both the a and b indices of the originally residen~t 
particle. The coefficients S 2L and S 2R are the probabilities for particles 
coming into the state (a, b) after a left or right rotation, respectively, of 
their a and b vectors. This notation has been used previously by 
Wolfram./2/The coefficient S 2B is the probability for two-particle head-on 
particle collisions in which the a vectors do not change after the collision, 
but the b vectors do change. Finally, the coefficient S 2 denotes probability 
of two-body head-on collisions which cause the state (a, b) to become 
unoccupied. 

From the definition of B~o, the conservation of magnetic field requires 
that the three-body collisions happen only when they have symmetric b 
vectors,-a condition that can be written as 

3A 
S e (b)  S e f g ( b ) = 6 ( e - f  + 2 ) 6 ( e - g + 4 )  3A 

S3~(b) = 6 ( e - f +  2) f i ( e -  g + 4) S~B(b) (12) 

S~(b)  = 6(b - e + 2) 6(b - f  + 4) S3(b) 
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Similarly, the two-body collision probability has the form 

S2e~(b) = 6(e - f + 3) S2eL(b) 

S~R(b) = 6(e - f + 3) S~R(b) (13) 

S S ( b )  = 6(e - f + 3) S2e(b) 

Assuming that lab departs only slightly from the state of equilibrium, 
we have 

fa _c(o) ~_ c(~) 
b - - J a b  ~ . ]  ab  

i f ~ l  ~ c(o~ "~ J a b  

Then Eq. (5) can be written to first order as 

(o) (o) 3tfab (X, t )+  {(1 - -  IPabl)~a+P.bgb} -Vfo b (x, / )  = ()(1)o. ab (14) 

where f2 (l/-x~ r~(~ c(1) The c~(~ are the linear expansion coef- 
ab - -  /..~r ~ a b , ~ r ,  2 J a b  " ~ a b ,  a , 2  

ficients from the collision operator in (4). Considering the effects of 
sequential collision, and after some simple algebra, one obtains that 

c ( o )  _ ( , ~  A_ (~(0)(2)](~ _~_ (-,(0)(3) ] ,q 
ab,~r,; t  - -  ~ "~ ab,  a , 2 1 k  U ~ a b ,  o,  2 !  - -  u 

Here, C ~~ denotes the linear expansion matrix derived from the sym- 
metric three-body collision operator f23b, and C (~ denotes the linear 
expansion matrix derived from the head-on two-body collision operator 

(2) while ~ is the unit matrix. In both C (~ and C (0)(2), only f(~ t) ab 
is used. Note that in general C(2)C(3)r C(3~C (2), which represents the fact 
that the two steps of the sequential collision process do not commute. The 
three-body step is implemented first to minimize spurious conservation 
effects. 

Following refs. 14 and 9, and after some very tedious algebra, we 
obtain the kinematic viscosity v, 

1 
v = 2 " 7 2 ~  ( [P~a+11 - -  IPa~[ + P~a--ZP~a+a){(1 - -  [ p ~ ! ) 2 - -  (1 - -  IP~,a+ 11)2 

+ 2 ( 1 - [ p . . l ) p , ~ - 4 ( 1 - l p , ~ + ~ l ) p a a + 1 + l p , ~ , l Z - l p . . + ~ [ a } + v ~  (15) 

the bulk viscosity va, 

Vd= IP,,.+~l-lp,~a[+p~.-~p~,~+~ [ ( 1  - I p ~ [ ) 2 -  (1 - I p . ~ +  1{) 2 
1 3 \  

+ 2 ( 1 - ] p . o l ) p ~ - ( 1 - [ p a . l ) p ~ o + ~ + [ p ~ . [ 2 - [ p ~ o + t [  2] (16) 
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the magnetic resistivity/~, 

# = 5--~2 ~ (3 - ]Paa l -2  JP~+ll +pa~+p~+~)[qa~(1-IP~[) 

+ 2q~+i(1 - [p~a+l [ )+2r~a+lp~a+l  

+ ra~+l(1--lp~+ll)+q~pa~+qa~+iP~a+l] 

} + ~3(1--1Pa~+ll)[q~+l(1--lP.a+a[)--ra~+lP~+l] +Pl (17) 

and the bulk magnetic resistivity #a, 

~d= l ~ 2  "~2 ([P~a+ ll - lPaal + Paa- Rpaa+ l)[qaa( l - lPaa[ ) 

- q~a+l(1 - [ P a a + l l ) - - r ~ a + i P ~ a + l -  2ro~+ 1(1 - - [p~+  ~]) 

+ qaapo~--2q~+~p~+l]+ ~ -  IPaal --~ IP.~+~I 

II ' + P~+ Pa~§ q~a(l-- lP.ol)+~q~+~(l-- lP~+ll)  

+ ~roa§ + roo+l(1 --IPaa§ 

_ 9_9 (1 -IP.a+~l)[q..+l(1 -IPaa+ll)--raa+IPa~+l]~ (18) 
2~3 ) 

In the above equations, 

1 
21= 1--~(IPaa] + 2  [P~a+l[--Paa--Pa~+l) 

1 
22= 5 (qaa + 2q~§ 1 +raa+l -kraa) 

~ = ( 1  - 3 ~ 1 ) ( 1  - 2 4 k 2 )  - 1 

~ = ( 1  - 6 ~ : 1 ) ( 1  - 2 4 k 0  - 1 

~3 = 72klk2 

kl = SZd(1 - d) 2 

k2 = 6S3Bd2(1 - d) 3 
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and v~ and #~ are the lattice viscosity and the lattice magnetic, resistivity, 
respectively, from the particle streaming in the discrete space: 

1 
vt = 2 - ~  [-(1 - [paa [ )2 - t -2 (1 -  [ P a a + l l ) 2 + p a a  tPa,[ 

+ P ~ + I  lPa,+ll + 6  IP~a+l[ (1--[P~a+ll)]  

1 
#~= 242----~ [-qa~+ q~a+l(5--3 ] p a ~ + l l ) + r a ~ + ~ ]  

In deriving the equations above, we have assumed that S 3A = S 3B = S 3 

and s Z C = s 2 R = S  2 from consideration of rotational symmetry of the 
collisions. 

In Figs. 1 and 2, we present the analytical results for the kinematic 
viscosity and the magnetic resistivity (solid lines and the right vertical axis) 
as a function of density per state d for a typical case: Pa~ = --0.2000, 
rao = 0, P~a+l = 0.1009, q,~ = 1.7800, qaa+l = 0.1349, raa +~ = --1.2030 
(C~ =2.179 and C2= 1.032). The parameters $ 2 =  1/6 and S3B= 1/12 are 
used, which should be close to the real situations in the coding discussed 
above. However, since a real numerical implementation would use the 
maximum possible number of sequential collisions for each lattice cell, it 
can be expected that the analytically obtained viscosity should be a little 
bigger than the simulation results. From these two plots, one can see that 
the increase of density will lead to a decrease of transport coefficients. This 
tendency agrees with other lattice gas models. (61 The viscosity and 
resistivity for  the original model have also been given in Figs. 1 and 2 for 
comparison (using the dashed lines and the left vertical axis). As pointed 
out before, the present model with higher frequency of collisions gives 
much smaller transport coefficients. We see that the current model gives 
about two orders of magnitude smaller viscosity and resistivity than the 
original model. 

In order to compare the analytical results for the transport coefficients 
with simulation, we perform numerical measurements of the transport 
coefficients in the present model using the following two methods: 

(i) Forced channel flow with no magnetic field. 
The idea of using a forced channel flow to measure the kinematic 

viscosity in lattice gases has been described previously. (16) For pure 
one-dimensional channel flow, the momentum equation will have a very 
simple form: 

v = f = const 
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Here Ux is the velocity along the channel direction, and is dependent only 
on the y direction, f is the forcing rate for unit ar.ea at each time step. For 
the nonslip boundary condition, Ux has a parabolic form. The relation 
between the forcing and the viscosity of the system has a simple form: 

f W  2 
v = - -  (19) 

8jnl~x 

where W is the channel width and Jmax is the maximum velocity (in the 
center of the channel). In the simulation, the forcing is implemented by 
flipping particle directions (16) randomly in space for each time step. In 
order that the particle flipping only changes the momentum field and does 
not induce any change in the magnetic field, one must carefully choose the 
state (a, b) that is allowed to be forced. Suppose that the flow direction is 
along x. In order to have a stable flow, one could change the particle direc- 
tion of a particle in state (a, b) by flipping its a coordinate to increase the 
momentum in the x direction. This could be accomplished by changing 
particles moving in directions 3, 4, and 5 to directions 2, 1, and 6, respec- 
tively, regardless of b, as done in the FHP-.type lattice gas models. (16) 
However, from (6), one can find that the only particle flipping that ensures 
that there is no magnetic field induced is going from a configuration with 
a particle with direction a change to another with a particle in the direction 
a + 3. Moreover, if we are only interested in a forcing in the channel 
direction, from the microscopic velocity definition, the a direction must be 
in the direction parallel to the forcing direction, i.e., 4 and 1. Otherwise, 
there would be an additional forcing added in the vertical direction. 

Using a forced channel flow and Eq. (19), we have measured 
viscosities for lattice gas systems with the complete collision operator in the 
sequential version. In Fig. 1, we present the simulation results (square sym- 
bol) for viscosity as a function of density per state d compared with analyti- 
cal results (solid line). The simulation has been done for a system with the 
same parameters used in the analytical curve. The typical lattice gas system 
size is 256 x 128. In order to have a zero velocity in the boundary, we allow 
the Upper half-space (with 64 lattice layers) to be forced in the positive x 
direction and the lower half-space to be forced in the negative x direction. 
Periodic conditions have been used for both x and y directions. The initial 
configuration of the system has a zero velocity. We run about 20,000 time 
steps to allow the system to approach a local equilibrium state, then time 
average over the next 20,000 time steps and space average in the x 
direction to obtain a velocity distribution. As we expected, the viscosities 
in the simulation are smaller than the analytical results due to the higher 
collision frequency in the real simulation. 
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Fig. 1. Viscosity as function of density for the MHD CA model. Solid line, associated with 
the vertical axis on the right side, is the analytical result for the approximate treatment of the 
sequential collision method described in the text. The dotted line (left vertical scale) is the 
analytical result from the original formulation of the model, using only two- and three-body 
collisions with no spectators. (D) The values of the viscosity obtained from numerical simula- 
tions of a forced channel flow, also described in the text. The sequential collisions give 
viscosities nearly two orders of magnitude smaller than the earlier model with only two- and 
three-body collisions. 

(ii) Free-decay system. 
An alternative method  to measure the t ranspor t  coefficients is to use 

a simple decaying flow system, by which we measure the resistivity of the 
present M H D  lattice gas model/17) For  an unforced system with periodic 
boundaries  (or infinite system), the one-dimensional  M H D  problem is 
reduced to a pure diffusion equat ion 

0Bx 
3t = #V2Bx 

If Bx only depends on the y coordinate  and the initial condit ion is a 
sinusoidal field Bx(O)= Bo sin(ky), then the solution can be written as 

B~(y, t) = Bx(O) exp(- I~k2t )  (20) 

By measur ing the decay rate of this sinusoidal B x field, one can obtain 
the resistivity. In Fig. 2, we present the numerical  measurement  results of 
# (represented by the square symbol)  as a function of  particle number  per 
state. A system of 8192 x 256 is used. Bx (0 )=0 .1  and k=2z~/256. The 
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Fig. 2. Resistivity as a function of density for the MHD CA model. Solid line (scale on right 
vertical axis) is the analytical result for the approximate treatment of the sequential collision 
method described in the text. The dotted line (left vertical axis) is the analytical result from 
the original formulation of the model, using only two- and three-body collisions with no 
spectators. ( [ ] )  The values of the resistivity obtained from numerical simulations of a freely 
decaying magnetic field, also described in the text. The present model with sequential 
collisions gives resistivities much smaller than those in the earlier formulation of the model. 
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Fig. 3. Decay of the magnetic field intensity, shown on a log scale, versus time, for a typical 
freely decaying magnetic field simulation with the MHD CA model with sequential collisions. 
The behavior is close to exponential in time, and serves to determine the value of the 
resistivity. 
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resistivity is obtained by averaging the decay rate # at each line. The 
exponential decay of Bx can be seen from simulations. A typical decay plot 
for Bx/Bo is given in Fig. 3. One can see from Fig. 2 that the simulations 
again have a good agreement with the analytical results. 

4. S O U N D  W A V E S  A N D  A L F V F N  W A V E S  

Let us consider a small disturbance of a uniform fluid system with a 
constant magnetic field: 

n = n o + a n  

Bi= Boi + 6Bi (21) 

vi = 6vi 

with n o = const, Boi= const, Jan] ~ no, laBij ~ ]Boil, and [avi[ ~ 6n. Inserting 
(21) into the first equation in (7) and (11) for a nondissipative case, to the 
first order in an, 6v, and aB, we have 

8(6n) a(avi) 
~-~ + no ~ = 0 (22) 

O(6Vi) C 1 0 
no - -  - (6n) 

~t 6 Oxi 

[n o g(no)( Boj6Bi + 6BjBo~) + ganBojBoi] + C2 8--~j 

C2 0 
2 Oxi [n~176176 6BsB~176 

no ~ + Bo~-~ (an) = C2n o g(no) [BojaVi- avjBoi] (23) 
a 

where ~ = g(no) + no g'(no) and g'(no) = -18/(36 - no) 2. 
We make use of the Laplace-Fourier transformation 

fo ~/(k, s) = dt e-*' eik'rW(r, t) dr (24) 

where W could be any one of an, 6v, or fiB. Then from (23) and (24), we 
have the dispersion relation 

s ik 0 (25) 

i m  1 �9 k s{ C2 g(no) iEkBo- Bok] = 0 

sB o - iC2g(no)[Bo'k~ - B o k  ] s~ 

where/01 [(C1/6 -t- 1 2 = ~C2Bo ~)~ - C2 ~BoBo]. 
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For the pure fluid case, Bs = 0, Eqs. (25) give the simple relation s/k = 
(C~/6) m and (23) will give a sound wave propagation equation for the 
density fluctuation and velocity fluctuation, such as 

(~2 (Sn 
Ot 2 = c2~V 2 3n 

with the sound speed c, = (C~/6) ~/2. The sound speed is a property of the 
system, and for the present lattice gas model, this sound speed is a function 
only of C~. In addition, we know (14~ that C~ depends only upon Paa and 
p~+~. Thus, the sound speed here is affected by the random walk of the 
particles only. 

After eliminating the velocity terms in (23), we obtain an equation 
for aBe: 

02 1 t C1 02~n 
#t ---~(~Bg=B~ - C z g ( n ~  n o ~ 6 3x 2 

02 
+ Czno g(no) ~ (B~ 6BkBoj) 

02(5n 02 C 2 02(~n] 
+  BokSoj axk axj C2no g(no) Bok Bk-- 7- 7 f f3  

+ C2 g(no) Bok 1 { C1 026n 
n o 6 Oxi Oxk 

02 
+ C2 ~ [no g(no)(Boj(3B~ + 6BjBo~) + ~6nBojBoi] 

C 2 02 } 
2 Oxiax k [n~176176176 (26) 

If we choose a special case with Box = 0 and Boy = Bo, from (23), we get 

02(~Bx) 02 02 
c?t2 - C~ g2(no) B 2 ~ (~B x -  C 2 g2(no) B~ ~ 6B x 

02 
- c ~ g ( n ~  3 6 B x - C ~ g ( n ~  02 6n (27) 

no ax ay 

For low Mach number, we assume that 6 n ~  6Bx; we can drop the "last 
term in the above equation. The second and third terms on the right-hand 
side of (27) come from the nonphysical terms (proportional to B 2) in the 
equation of state. Suppose that the flow in the x direction is homogeneous, 
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and we then average the above equation in the x direction. This produces 
the wave equation 

02 (~2 
~75 6Bx(y, t) - C 2 ~y2 aBx(y, t) = 0 (28) 

where CB = C2 g(no) Bo is the Alfv6n speed. The solutions are Alfvdn waves, 
in which the x component of the magnetic field propagates parallel or 
antiparallel to the mean magnetic field direction at the Atfv6n speed. The 
dependence of the Alfv6n wave speed on the parameter C2 is caused by the 
particle random walk effect of the present model and the g(n) effect 
represents the non-Galilean effect of the model on the magnetic wave 
propagation, which usually reduces the Alfv6n speed. One can derive a 
similar equation for the propagation of aBy along a mean magnetic field in 
the x direction. 

In order to verify the results obtained above, we use the lattice gas 
simulation to measure the sound and Alfv6n wave speeds. The 
measurements can be done by measuring the power spectrum (Laplace 
transform of the two-time correlation function 118~) in the long-wave limit 
for density and magnetic field. The magnetic field power spectrum 
(B(k, s) B*(k, 0 ) ) / (B(k ,  0) B*(k, 0))  and the density power spectrum 
(n(k ,s)n*(k ,O)) / (n(k ,O)n*(k ,O))  will have a Lorentzian form: 
s/(s2+ a2k2). Here a is either the sound speed C~ or the Alfv6n speed C8. 

For measuring the sound propagation, we use 8192 x 256 lattice cells 
with a zero mean velocity field and zero mean magnetic field. An average 
in the x direction is used to replace the ensemble average, motivating the 
choice of a lattice that is much bigger in the x direction than in the y 
direction. Thus, only the propagation of the velocity fluctuation in the y 
direction is measured. 

A typical power spectrum of the density correlation is shown in Fig. 4 
as a function of co for P~a = -0.2, selecting only the contributions due to 
fluctuations with wavenumber k =  1. The figure shows a very sharp 
resonance, corresponding precisely to the solution of the dispersion relation 
with the same parameters. In Fig. 5, we present a measurement of the 
sound speed versus the parameter C1 (obtained by varying the streaming 
parameter pa~ for the solution in ref. 14). We see that the sound speed of 
the system changes with the variation of the random walk parameter P~a" 
It is interesting to see that the sound speed could be much smaller than the 
sound speed in the FHP lattice gas of 1/x/~. This feature has a potential 
application for simulating supersonic flows, and one could vary Pa~ to 
obtain different values of the Mach number. 

For simulating Alfv6n waves, again a system of 8192 x 256 lattice cells 
is used. Periodic conditions have been used for both the x and y directions. 
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Fig. 4. Power spectrum of the density field, as a function of frequency, for fluctuations with 
wavenumber k = 1, showing a sharp resonance at a frequency corresponding to the solution 
of the sound wave dispersion relation. 

Initially a magnetic field is imposed along the y direction of amplitude Bo, 
whereas Bx and v are random and statistically zero. For a small magnetic 
field B0, Eq. (9) should be a good approximation for real equilibrium to 
begin with, which satisfies the physical constraint 0 ~< fab ~< 1. For a bigger 
B field, actually for the parameters listed in Table I in ref. 14, when 

2 i 

0 i F , , , i r i i i , 

1 2 
C1 

Fig. 5. Numerical measurements of the sound speed in the M H D  CA model, obtained by 
varying the streaming parameter P~a, shown by the symbols (branch I: squares; branch II: 
crosses), and compared with the analytical result, shown as a solid line. 
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B>0.16, f,b does not satisfy this restriction. Thus, the expansion (9) 
should be replaced by the exact equilibrium expression in (8). The distribu- 
tion function usually cannot be evaluated in closed form for arbitrary 
specified velocity and magnetic fields. Fortunately for the special case of Bo 
in a particular direction between two lattice links, the distribution Jabr(O) can 
be exactly obtained by solving a cubic equation for ~ and t/when v = 0: 

A+A H ~ - H ~ [ A + A  - + ( A  + + A - ) ] - H , [ A + A  - 2 ( A  + + A - ) + 3 ]  

- A + A - + 3 ( A + + A  ) - 9 = 0  (29) 

and 
I+ ( I+H1) (2 -A  +) 

H2 = H1 [A +(1 -+-HI)- 1] (30) 

with H 1 i> 0 and H2 >10. In the above equations, 

and 

H a = e ~ 

H2 = exp(tlBo" 31/2/2) 

A +- = n nB o 1 

"-~+2 xf3 qaa + 2qaa+ l + raa+ l 

. 1 5  ~ J ~ I ~ ~ I , i ~ ] 

.I ,,,,/'"'"'"''"'""'""/"/'i 
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Fig. 6. Dependence of the Alfv~n speed in the M H D  CA model as the value of the uniform 
magnetic field is varied. For  fractional density 0.1, the dotted line is the analytical result and 
the crosses are the results obtained by numerical simulation. For fractional density 0.3, the 
solid line is the analytical result and the squares are the numerical simulation results. 

822/68/3-4-14 
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In order for the system to approach equilibrium, it is allowed to run 
5000 time steps without computing any macroscopic quantity. During the 
next 16384 time steps, B x is obtained for each time step and averaged for 
each row, so that it has only a y dependence. In Fig. 6, we show the simula- 
tion measurement of Alfv6n wave speed versus magnetic intensity Bo com- 
pared with analytical results for density 0.1 and 0.3. The solid and dashed 
lines are the analytical results for density 0.1 and 0.3, respectively, and the 
x and [] signs represent the simulation results for density 0.1 and 0.3, 
respectively. This numerical experiment indicates good agreement between 
the theoretical Alfv~n speed and the Alfv~n speed obtained in the simula- 
tions. 

5. C O N C L U S I O N S  A N D  D I S C U S S I O N S  

In this paper we have described a lattice gas (cellular automaton) 
model for magnetohydrodynamic systems, based on the model previously 
derived by Chen etaL ~13'14~ The model utilizes a 36-bit representation of 
particle states at each lattice node, incorporating an exclusion principle to 
maintain a simple logical and Boolean structure. As in the FHP model, the 
dynamics of particles residing on the lattice consists of streaming and colli- 
sions that conserve specified macroscopic quantities. However, in the pre- 
sent model the streaming is nondeterministic and bidirectional, to account 
for the influences of the Lorentz force on the MHD fluid. Collisions are 
specified to conserve particle number, momentum, and magnetic field 
intensity, corresponding to the macroscopic MHD variables. Taking into 
consideration the symmetries of the MHD model and several constraints, 
the model reduces to a family of MHD lattice gas models, differing 
according to a single streaming probability coefficient. 

Apart from discussing a number of details of the implementation, the 
model presented here also extends previous work by describing a sequential 
collision procedure that allows for transport coefficients that are up to two 
orders of magnitude smaller than those obtained in the original model. 
This permits simulations to be done at much higher Reynolds numbers for 
a given lattice size, opening up the possibility for computation of a greater 
variety of nonlinear effects, such as turbulence, in an MHD lattice gas 
context. Similar sequential collision procedures may be also helpful in 
implementations of other lattice gas models. 

Some of the main results presented in the paper pertain to the 
viscosity and resistivity, which have been computed analytically in an 
approximate way and compared favorably to simulation results in forced 
and decaying flows. As predicted by the theory, the numerical results show 
much smaller transport coefficients (higher Reynolds numbers) than in the 
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original formulation of the model. In addition, we examined the two most 
important normal modes of the model, the sound wave and the Alfv6n 
wave, from both analytical and numerical perspectives. Both wave modes 
are found to behave in a physically reasonable way in the theory, with 
wave speeds partially controllable by the choice of the bidirectional 
streaming parameters. In particular, the sound speed can be much smaller 
than in the FHP model, opening up the possibility of relatively higher 
Mach number simulations with the present model. Finally, the numerically 
computed behavior of both the sound wave and the Alfv6n wave are found 
to agree well with the theoretical calculations. 

We conclude that the 36-bit MHD lattice gas model with sequential 
collisions can reproduce at least several of the most basic types of MHD 
behavior that would be seen in real physical systems and in MHD solu- 
tions obtained with more standard methods. Although the present paper 
has not examined the deficiencies of the model in great detail, we acknow- 
ledge that certain shortcomings need to be addressed further. For example, 
the model has a relatively low signal-to-noise ratio, which at the present 
time prevents the model from being competitive with standard methods, 
such as spectral methods, in terms of efficiency and accuracy. Although this 
problem also plagues other lattice gas models, it is exacerbated in the 
present model by the additional randomness associated with the nondeter- 
ministic bidirectional streaming process. Second, the bidirectional streaming 
also introduces complications in implementations of boundary conditions. 
We have investigated a number of ways of enforcing boundary conditions 
in a statistical way (results not shown here), and found that these methods 
are unacceptably noisy or unstable. For all of the simulations shown in the 
present paper, we were able to avoid these complications, but it appears to 
be quite difficult to enforce the range of MHD boundary conditions that 
one would like to use for real problems. For example, we have not been 
able to find an algorithm for effectively enforcing perfectly conducting 
conditions over an arbitrarily shaped boundary. Finally, we have not 
addressed further the inherent problem of limiting or eliminating the 
nonzero divergence of the magnetic field. This difficulty was described in 
the original formulation of the MHD lattice gas model, O3'14) where it was 
argued that diffusion effects may prevent large values of this nonphysical 
quantity in freely-decaying flows. But we are unable to predict the decay 
speed of this nonzero divergence at the moment. In addition, we have 
found in the numerical experiments described here that typical values of 
V" B remain acceptably small. A modification to the method that would 
effectively eliminate V" B in the solutions would appear to be required 
before the current lattice gas method could be viewed as robust enough for 
general MHD computations. Recently, we have developed a new lattice 
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Bol tzmann  me thod  fol lowing the basic  mode l  discussed in previous  
papers  (13'14) and  this paper .  We  have found (19) tha t  the lat t ice Bo l t zmann  

me thod  will keep zero divergence of the magnet ic  field for a very long t ime 
if the initial  cond i t ion  is divergenceless.  O n  the posi t ive side, the mode l  
admi ts  a n u m b e r  of useful features in para l le l  compu t ing  envi ronments ,  
and  it has been shown here to d i sp lay  accura te ly  a n u m b e r  of  bas ic  but  

essential  aspects  of m a g n e t o h y d r o d y n a m i c  flows. Thus  we are led, as are 
others  invest igat ing lat t ice gas mode l s  for a var ie ty  of  systems, to r emain  
opt imis t ic  tha t  the lat t ice gas a p p r o a c h  to compu ta t i on ,  such as the present  
M H D  model ,  m a y  represent  a new di rec t ion  for pursu ing  large-scale  fluid 
and  M H D  research in the future. 
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